繼續(xù)觀察上圖,如果開關K置于3觸電處,那么這時負載電阻為零(不考慮導線電阻的情況下)。這時就好比直接將電源的正極接到負極上。此時電路就處于短路狀態(tài)(老話俗稱連火了)。在此狀態(tài)下電路中的電流幾乎就是電源電動勢÷電源內部電阻了,即I=E/r0。由于電源內阻r0一般很小,所以如果電路出現(xiàn)短路,那么電流I就很大,如果電路中沒有保護裝置,較大的短路電流很容易導致線路過熱燒壞或者直接燒壞電源,造成嚴重的安全事故即財產(chǎn)損失,電工工作中要仔細避免。所以我們電工一般都需要在電路中安裝好熔斷裝置(比如保險絲),這一當電流突然增大時可以瞬間把保險絲燒壞,從而實現(xiàn)斷路而保護設備及電源的安全。
![](http://www.xue153.com/file/upload/201803/16/11561839663.jpg)
《電流的熱效應:焦耳-楞次定律講解》的課程中我們知道,電流通過電阻時要做功,將電能轉換為熱能,電阻會發(fā)熱,這種現(xiàn)象稱為電流的熱效應。這種效應在我們生活中的電器設備中被廣泛使用,但因為這種熱效應會時刻跟隨著電流,所以它有利也有弊。有利的電流熱效應。電流熱效應的利弊。例如電爐通電后,電爐絲變得發(fā)紅;白熾燈通電后,一會兒熱得燙手;電飯鍋通電以后,可以發(fā)生米煮成熟飯。這些都是電流熱效應的有利應用,這些設備好包括電熱水器、電烤箱等等:另外它的有利應用在工業(yè)中也是非常廣泛,主要也是用來制造熱能。電流熱效應的弊。當大電流通過電導線而導線又不夠粗時,就會產(chǎn)生大量的熱量,破壞導線的絕緣性能,從而導致多條導線的線路出現(xiàn)短路,引發(fā)電氣火災。為了避免導線過熱,有關部門對各種不同截面積的電導線纜規(guī)定了最大允許電流(安全電流)。短路電流的熱效應是釀成電氣火災的主要原因。因為短路電流很大,通常為工作電流的幾倍至幾十倍,足以引燃短路點周圍的可燃物質,從而導致電氣火災的發(fā)生,F(xiàn)在電工在一些電路設計及施工中,采取電氣火災監(jiān)控系統(tǒng)來盡量減少和控制此類事件的發(fā)生及影響。一些大功率電子元器件在工作中要發(fā)熱,電動機、變壓器等在運行中會產(chǎn)生升溫,這也是電磁熱效應引起的,溫度過高會危機這些設備的安全,所以一般要想方設法采取散熱措施,以便延長設備的使用壽命。
![](http://www.xue153.com/file/upload/201803/16/11561628663.jpg)
定義:在均勻磁場中,磁感應強度B和垂直于磁場方向的某一面積S的乘積,稱為通過這個面積的磁通量,用符號“Φ”表示。因此可得知磁通量計算公式為:磁通量計算公式上述公式中所代表的的具體含義分別是:B:表示磁感應強度,單位(T)S:表示與磁力線方向垂直的面積,單位(m2)Φ:表示穿過S面積的磁通,單位(Wb)磁通量單位:磁通量標示符Φ的國際單位制單位是韋伯,常以符號Wb表示。在電力工程計算中,也常采用麥克斯韋作單位,簡稱“麥”,韋伯和麥克斯韋之間的換算關系為:1 麥克斯韋(Mx)= 1 高斯(Gs)×厘米2 = 10-8韋伯(Wb)磁通密度如果吧磁感應強度B的大小和磁通量Φ與磁力線抽象的聯(lián)系起來,則可認為磁通Φ在數(shù)值上就等于垂直通過該單位截面的磁力線條數(shù)。由磁通量計算公式Φ=BS得:磁通密度,這樣,磁感應強度B的大小就等于通過單位面積上的磁力線條數(shù)。因此,磁感應強度大小又稱為磁通密度。由此得出一個結論:磁通密度是磁感應強度的一個別名,它表示垂直穿過單位面積的磁力線的多少。(注意筆者上面將Φ和B比作磁力線的描述中加粗的字體含義區(qū)別)由此可知,B和Φ是從不同角度描述磁場性質的物理量。磁感應強度B是描述磁場中某點的磁場大小,而磁通量Φ是表示磁場中某一范圍內的磁場總體情況的物理量。磁感應強度B是矢量(有大小和方向的量叫矢量),而Φ是標量(只有大小而無方向的量叫標量)。在分析電磁現(xiàn)象時,應視具體情況而選用合適的量。